aboutsummaryrefslogtreecommitdiffstats
path: root/doc/ikev2/[RFC2104] - HMAC - Keyed-Hashing for Message Authentication.txt
diff options
context:
space:
mode:
Diffstat (limited to 'doc/ikev2/[RFC2104] - HMAC - Keyed-Hashing for Message Authentication.txt')
-rw-r--r--doc/ikev2/[RFC2104] - HMAC - Keyed-Hashing for Message Authentication.txt619
1 files changed, 0 insertions, 619 deletions
diff --git a/doc/ikev2/[RFC2104] - HMAC - Keyed-Hashing for Message Authentication.txt b/doc/ikev2/[RFC2104] - HMAC - Keyed-Hashing for Message Authentication.txt
deleted file mode 100644
index 1fb8fe11a..000000000
--- a/doc/ikev2/[RFC2104] - HMAC - Keyed-Hashing for Message Authentication.txt
+++ /dev/null
@@ -1,619 +0,0 @@
-
-
-
-
-
-
-Network Working Group H. Krawczyk
-Request for Comments: 2104 IBM
-Category: Informational M. Bellare
- UCSD
- R. Canetti
- IBM
- February 1997
-
-
- HMAC: Keyed-Hashing for Message Authentication
-
-Status of This Memo
-
- This memo provides information for the Internet community. This memo
- does not specify an Internet standard of any kind. Distribution of
- this memo is unlimited.
-
-Abstract
-
- This document describes HMAC, a mechanism for message authentication
- using cryptographic hash functions. HMAC can be used with any
- iterative cryptographic hash function, e.g., MD5, SHA-1, in
- combination with a secret shared key. The cryptographic strength of
- HMAC depends on the properties of the underlying hash function.
-
-1. Introduction
-
- Providing a way to check the integrity of information transmitted
- over or stored in an unreliable medium is a prime necessity in the
- world of open computing and communications. Mechanisms that provide
- such integrity check based on a secret key are usually called
- "message authentication codes" (MAC). Typically, message
- authentication codes are used between two parties that share a secret
- key in order to validate information transmitted between these
- parties. In this document we present such a MAC mechanism based on
- cryptographic hash functions. This mechanism, called HMAC, is based
- on work by the authors [BCK1] where the construction is presented and
- cryptographically analyzed. We refer to that work for the details on
- the rationale and security analysis of HMAC, and its comparison to
- other keyed-hash methods.
-
-
-
-
-
-
-
-
-
-
-
-Krawczyk, et. al. Informational [Page 1]
-
-RFC 2104 HMAC February 1997
-
-
- HMAC can be used in combination with any iterated cryptographic hash
- function. MD5 and SHA-1 are examples of such hash functions. HMAC
- also uses a secret key for calculation and verification of the
- message authentication values. The main goals behind this
- construction are
-
- * To use, without modifications, available hash functions.
- In particular, hash functions that perform well in software,
- and for which code is freely and widely available.
-
- * To preserve the original performance of the hash function without
- incurring a significant degradation.
-
- * To use and handle keys in a simple way.
-
- * To have a well understood cryptographic analysis of the strength of
- the authentication mechanism based on reasonable assumptions on the
- underlying hash function.
-
- * To allow for easy replaceability of the underlying hash function in
- case that faster or more secure hash functions are found or
- required.
-
- This document specifies HMAC using a generic cryptographic hash
- function (denoted by H). Specific instantiations of HMAC need to
- define a particular hash function. Current candidates for such hash
- functions include SHA-1 [SHA], MD5 [MD5], RIPEMD-128/160 [RIPEMD].
- These different realizations of HMAC will be denoted by HMAC-SHA1,
- HMAC-MD5, HMAC-RIPEMD, etc.
-
- Note: To the date of writing of this document MD5 and SHA-1 are the
- most widely used cryptographic hash functions. MD5 has been recently
- shown to be vulnerable to collision search attacks [Dobb]. This
- attack and other currently known weaknesses of MD5 do not compromise
- the use of MD5 within HMAC as specified in this document (see
- [Dobb]); however, SHA-1 appears to be a cryptographically stronger
- function. To this date, MD5 can be considered for use in HMAC for
- applications where the superior performance of MD5 is critical. In
- any case, implementers and users need to be aware of possible
- cryptanalytic developments regarding any of these cryptographic hash
- functions, and the eventual need to replace the underlying hash
- function. (See section 6 for more information on the security of
- HMAC.)
-
-
-
-
-
-
-
-
-Krawczyk, et. al. Informational [Page 2]
-
-RFC 2104 HMAC February 1997
-
-
-2. Definition of HMAC
-
- The definition of HMAC requires a cryptographic hash function, which
- we denote by H, and a secret key K. We assume H to be a cryptographic
- hash function where data is hashed by iterating a basic compression
- function on blocks of data. We denote by B the byte-length of such
- blocks (B=64 for all the above mentioned examples of hash functions),
- and by L the byte-length of hash outputs (L=16 for MD5, L=20 for
- SHA-1). The authentication key K can be of any length up to B, the
- block length of the hash function. Applications that use keys longer
- than B bytes will first hash the key using H and then use the
- resultant L byte string as the actual key to HMAC. In any case the
- minimal recommended length for K is L bytes (as the hash output
- length). See section 3 for more information on keys.
-
- We define two fixed and different strings ipad and opad as follows
- (the 'i' and 'o' are mnemonics for inner and outer):
-
- ipad = the byte 0x36 repeated B times
- opad = the byte 0x5C repeated B times.
-
- To compute HMAC over the data `text' we perform
-
- H(K XOR opad, H(K XOR ipad, text))
-
- Namely,
-
- (1) append zeros to the end of K to create a B byte string
- (e.g., if K is of length 20 bytes and B=64, then K will be
- appended with 44 zero bytes 0x00)
- (2) XOR (bitwise exclusive-OR) the B byte string computed in step
- (1) with ipad
- (3) append the stream of data 'text' to the B byte string resulting
- from step (2)
- (4) apply H to the stream generated in step (3)
- (5) XOR (bitwise exclusive-OR) the B byte string computed in
- step (1) with opad
- (6) append the H result from step (4) to the B byte string
- resulting from step (5)
- (7) apply H to the stream generated in step (6) and output
- the result
-
- For illustration purposes, sample code based on MD5 is provided as an
- appendix.
-
-
-
-
-
-
-
-Krawczyk, et. al. Informational [Page 3]
-
-RFC 2104 HMAC February 1997
-
-
-3. Keys
-
- The key for HMAC can be of any length (keys longer than B bytes are
- first hashed using H). However, less than L bytes is strongly
- discouraged as it would decrease the security strength of the
- function. Keys longer than L bytes are acceptable but the extra
- length would not significantly increase the function strength. (A
- longer key may be advisable if the randomness of the key is
- considered weak.)
-
- Keys need to be chosen at random (or using a cryptographically strong
- pseudo-random generator seeded with a random seed), and periodically
- refreshed. (Current attacks do not indicate a specific recommended
- frequency for key changes as these attacks are practically
- infeasible. However, periodic key refreshment is a fundamental
- security practice that helps against potential weaknesses of the
- function and keys, and limits the damage of an exposed key.)
-
-4. Implementation Note
-
- HMAC is defined in such a way that the underlying hash function H can
- be used with no modification to its code. In particular, it uses the
- function H with the pre-defined initial value IV (a fixed value
- specified by each iterative hash function to initialize its
- compression function). However, if desired, a performance
- improvement can be achieved at the cost of (possibly) modifying the
- code of H to support variable IVs.
-
- The idea is that the intermediate results of the compression function
- on the B-byte blocks (K XOR ipad) and (K XOR opad) can be precomputed
- only once at the time of generation of the key K, or before its first
- use. These intermediate results are stored and then used to
- initialize the IV of H each time that a message needs to be
- authenticated. This method saves, for each authenticated message,
- the application of the compression function of H on two B-byte blocks
- (i.e., on (K XOR ipad) and (K XOR opad)). Such a savings may be
- significant when authenticating short streams of data. We stress
- that the stored intermediate values need to be treated and protected
- the same as secret keys.
-
- Choosing to implement HMAC in the above way is a decision of the
- local implementation and has no effect on inter-operability.
-
-
-
-
-
-
-
-
-
-Krawczyk, et. al. Informational [Page 4]
-
-RFC 2104 HMAC February 1997
-
-
-5. Truncated output
-
- A well-known practice with message authentication codes is to
- truncate the output of the MAC and output only part of the bits
- (e.g., [MM, ANSI]). Preneel and van Oorschot [PV] show some
- analytical advantages of truncating the output of hash-based MAC
- functions. The results in this area are not absolute as for the
- overall security advantages of truncation. It has advantages (less
- information on the hash result available to an attacker) and
- disadvantages (less bits to predict for the attacker). Applications
- of HMAC can choose to truncate the output of HMAC by outputting the t
- leftmost bits of the HMAC computation for some parameter t (namely,
- the computation is carried in the normal way as defined in section 2
- above but the end result is truncated to t bits). We recommend that
- the output length t be not less than half the length of the hash
- output (to match the birthday attack bound) and not less than 80 bits
- (a suitable lower bound on the number of bits that need to be
- predicted by an attacker). We propose denoting a realization of HMAC
- that uses a hash function H with t bits of output as HMAC-H-t. For
- example, HMAC-SHA1-80 denotes HMAC computed using the SHA-1 function
- and with the output truncated to 80 bits. (If the parameter t is not
- specified, e.g. HMAC-MD5, then it is assumed that all the bits of the
- hash are output.)
-
-6. Security
-
- The security of the message authentication mechanism presented here
- depends on cryptographic properties of the hash function H: the
- resistance to collision finding (limited to the case where the
- initial value is secret and random, and where the output of the
- function is not explicitly available to the attacker), and the
- message authentication property of the compression function of H when
- applied to single blocks (in HMAC these blocks are partially unknown
- to an attacker as they contain the result of the inner H computation
- and, in particular, cannot be fully chosen by the attacker).
-
- These properties, and actually stronger ones, are commonly assumed
- for hash functions of the kind used with HMAC. In particular, a hash
- function for which the above properties do not hold would become
- unsuitable for most (probably, all) cryptographic applications,
- including alternative message authentication schemes based on such
- functions. (For a complete analysis and rationale of the HMAC
- function the reader is referred to [BCK1].)
-
-
-
-
-
-
-
-
-Krawczyk, et. al. Informational [Page 5]
-
-RFC 2104 HMAC February 1997
-
-
- Given the limited confidence gained so far as for the cryptographic
- strength of candidate hash functions, it is important to observe the
- following two properties of the HMAC construction and its secure use
- for message authentication:
-
- 1. The construction is independent of the details of the particular
- hash function H in use and then the latter can be replaced by any
- other secure (iterative) cryptographic hash function.
-
- 2. Message authentication, as opposed to encryption, has a
- "transient" effect. A published breaking of a message authentication
- scheme would lead to the replacement of that scheme, but would have
- no adversarial effect on information authenticated in the past. This
- is in sharp contrast with encryption, where information encrypted
- today may suffer from exposure in the future if, and when, the
- encryption algorithm is broken.
-
- The strongest attack known against HMAC is based on the frequency of
- collisions for the hash function H ("birthday attack") [PV,BCK2], and
- is totally impractical for minimally reasonable hash functions.
-
- As an example, if we consider a hash function like MD5 where the
- output length equals L=16 bytes (128 bits) the attacker needs to
- acquire the correct message authentication tags computed (with the
- _same_ secret key K!) on about 2**64 known plaintexts. This would
- require the processing of at least 2**64 blocks under H, an
- impossible task in any realistic scenario (for a block length of 64
- bytes this would take 250,000 years in a continuous 1Gbps link, and
- without changing the secret key K during all this time). This attack
- could become realistic only if serious flaws in the collision
- behavior of the function H are discovered (e.g. collisions found
- after 2**30 messages). Such a discovery would determine the immediate
- replacement of the function H (the effects of such failure would be
- far more severe for the traditional uses of H in the context of
- digital signatures, public key certificates, etc.).
-
- Note: this attack needs to be strongly contrasted with regular
- collision attacks on cryptographic hash functions where no secret key
- is involved and where 2**64 off-line parallelizable (!) operations
- suffice to find collisions. The latter attack is approaching
- feasibility [VW] while the birthday attack on HMAC is totally
- impractical. (In the above examples, if one uses a hash function
- with, say, 160 bit of output then 2**64 should be replaced by 2**80.)
-
-
-
-
-
-
-
-
-Krawczyk, et. al. Informational [Page 6]
-
-RFC 2104 HMAC February 1997
-
-
- A correct implementation of the above construction, the choice of
- random (or cryptographically pseudorandom) keys, a secure key
- exchange mechanism, frequent key refreshments, and good secrecy
- protection of keys are all essential ingredients for the security of
- the integrity verification mechanism provided by HMAC.
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-Krawczyk, et. al. Informational [Page 7]
-
-RFC 2104 HMAC February 1997
-
-
-Appendix -- Sample Code
-
- For the sake of illustration we provide the following sample code for
- the implementation of HMAC-MD5 as well as some corresponding test
- vectors (the code is based on MD5 code as described in [MD5]).
-
-/*
-** Function: hmac_md5
-*/
-
-void
-hmac_md5(text, text_len, key, key_len, digest)
-unsigned char* text; /* pointer to data stream */
-int text_len; /* length of data stream */
-unsigned char* key; /* pointer to authentication key */
-int key_len; /* length of authentication key */
-caddr_t digest; /* caller digest to be filled in */
-
-{
- MD5_CTX context;
- unsigned char k_ipad[65]; /* inner padding -
- * key XORd with ipad
- */
- unsigned char k_opad[65]; /* outer padding -
- * key XORd with opad
- */
- unsigned char tk[16];
- int i;
- /* if key is longer than 64 bytes reset it to key=MD5(key) */
- if (key_len > 64) {
-
- MD5_CTX tctx;
-
- MD5Init(&tctx);
- MD5Update(&tctx, key, key_len);
- MD5Final(tk, &tctx);
-
- key = tk;
- key_len = 16;
- }
-
- /*
- * the HMAC_MD5 transform looks like:
- *
- * MD5(K XOR opad, MD5(K XOR ipad, text))
- *
- * where K is an n byte key
- * ipad is the byte 0x36 repeated 64 times
-
-
-
-Krawczyk, et. al. Informational [Page 8]
-
-RFC 2104 HMAC February 1997
-
-
- * opad is the byte 0x5c repeated 64 times
- * and text is the data being protected
- */
-
- /* start out by storing key in pads */
- bzero( k_ipad, sizeof k_ipad);
- bzero( k_opad, sizeof k_opad);
- bcopy( key, k_ipad, key_len);
- bcopy( key, k_opad, key_len);
-
- /* XOR key with ipad and opad values */
- for (i=0; i<64; i++) {
- k_ipad[i] ^= 0x36;
- k_opad[i] ^= 0x5c;
- }
- /*
- * perform inner MD5
- */
- MD5Init(&context); /* init context for 1st
- * pass */
- MD5Update(&context, k_ipad, 64) /* start with inner pad */
- MD5Update(&context, text, text_len); /* then text of datagram */
- MD5Final(digest, &context); /* finish up 1st pass */
- /*
- * perform outer MD5
- */
- MD5Init(&context); /* init context for 2nd
- * pass */
- MD5Update(&context, k_opad, 64); /* start with outer pad */
- MD5Update(&context, digest, 16); /* then results of 1st
- * hash */
- MD5Final(digest, &context); /* finish up 2nd pass */
-}
-
-Test Vectors (Trailing '\0' of a character string not included in test):
-
- key = 0x0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b
- key_len = 16 bytes
- data = "Hi There"
- data_len = 8 bytes
- digest = 0x9294727a3638bb1c13f48ef8158bfc9d
-
- key = "Jefe"
- data = "what do ya want for nothing?"
- data_len = 28 bytes
- digest = 0x750c783e6ab0b503eaa86e310a5db738
-
- key = 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
-
-
-
-Krawczyk, et. al. Informational [Page 9]
-
-RFC 2104 HMAC February 1997
-
-
- key_len 16 bytes
- data = 0xDDDDDDDDDDDDDDDDDDDD...
- ..DDDDDDDDDDDDDDDDDDDD...
- ..DDDDDDDDDDDDDDDDDDDD...
- ..DDDDDDDDDDDDDDDDDDDD...
- ..DDDDDDDDDDDDDDDDDDDD
- data_len = 50 bytes
- digest = 0x56be34521d144c88dbb8c733f0e8b3f6
-
-Acknowledgments
-
- Pau-Chen Cheng, Jeff Kraemer, and Michael Oehler, have provided
- useful comments on early drafts, and ran the first interoperability
- tests of this specification. Jeff and Pau-Chen kindly provided the
- sample code and test vectors that appear in the appendix. Burt
- Kaliski, Bart Preneel, Matt Robshaw, Adi Shamir, and Paul van
- Oorschot have provided useful comments and suggestions during the
- investigation of the HMAC construction.
-
-References
-
- [ANSI] ANSI X9.9, "American National Standard for Financial
- Institution Message Authentication (Wholesale)," American
- Bankers Association, 1981. Revised 1986.
-
- [Atk] Atkinson, R., "IP Authentication Header", RFC 1826, August
- 1995.
-
- [BCK1] M. Bellare, R. Canetti, and H. Krawczyk,
- "Keyed Hash Functions and Message Authentication",
- Proceedings of Crypto'96, LNCS 1109, pp. 1-15.
- (http://www.research.ibm.com/security/keyed-md5.html)
-
- [BCK2] M. Bellare, R. Canetti, and H. Krawczyk,
- "Pseudorandom Functions Revisited: The Cascade Construction",
- Proceedings of FOCS'96.
-
- [Dobb] H. Dobbertin, "The Status of MD5 After a Recent Attack",
- RSA Labs' CryptoBytes, Vol. 2 No. 2, Summer 1996.
- http://www.rsa.com/rsalabs/pubs/cryptobytes.html
-
- [PV] B. Preneel and P. van Oorschot, "Building fast MACs from hash
- functions", Advances in Cryptology -- CRYPTO'95 Proceedings,
- Lecture Notes in Computer Science, Springer-Verlag Vol.963,
- 1995, pp. 1-14.
-
- [MD5] Rivest, R., "The MD5 Message-Digest Algorithm",
- RFC 1321, April 1992.
-
-
-
-Krawczyk, et. al. Informational [Page 10]
-
-RFC 2104 HMAC February 1997
-
-
- [MM] Meyer, S. and Matyas, S.M., Cryptography, New York Wiley,
- 1982.
-
- [RIPEMD] H. Dobbertin, A. Bosselaers, and B. Preneel, "RIPEMD-160: A
- strengthened version of RIPEMD", Fast Software Encryption,
- LNCS Vol 1039, pp. 71-82.
- ftp://ftp.esat.kuleuven.ac.be/pub/COSIC/bosselae/ripemd/.
-
- [SHA] NIST, FIPS PUB 180-1: Secure Hash Standard, April 1995.
-
- [Tsu] G. Tsudik, "Message authentication with one-way hash
- functions", In Proceedings of Infocom'92, May 1992.
- (Also in "Access Control and Policy Enforcement in
- Internetworks", Ph.D. Dissertation, Computer Science
- Department, University of Southern California, April 1991.)
-
- [VW] P. van Oorschot and M. Wiener, "Parallel Collision
- Search with Applications to Hash Functions and Discrete
- Logarithms", Proceedings of the 2nd ACM Conf. Computer and
- Communications Security, Fairfax, VA, November 1994.
-
-Authors' Addresses
-
- Hugo Krawczyk
- IBM T.J. Watson Research Center
- P.O.Box 704
- Yorktown Heights, NY 10598
-
- EMail: hugo@watson.ibm.com
-
- Mihir Bellare
- Dept of Computer Science and Engineering
- Mail Code 0114
- University of California at San Diego
- 9500 Gilman Drive
- La Jolla, CA 92093
-
- EMail: mihir@cs.ucsd.edu
-
- Ran Canetti
- IBM T.J. Watson Research Center
- P.O.Box 704
- Yorktown Heights, NY 10598
-
- EMail: canetti@watson.ibm.com
-
-
-
-
-
-
-Krawczyk, et. al. Informational [Page 11]
-